Photosynthesis involvement in the mechanism of action of diphenyl ether herbicides.

نویسندگان

  • M P Ensminger
  • F D Hess
چکیده

Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1'-dimethyl-4,4'-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The generation of singlet oxygen (o(2)) by the nitrodiphenyl ether herbicide oxyfluorfen is independent of photosynthesis.

The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based...

متن کامل

Diphenyl Ether Herbicides, a Tool to Elucidate the Mechanism of Photophosphorylation

At least two different classes of ADP binding sites on chloroplast coupling factor are de­ scribed in the literature. High-affinity sites are assumed to entail regulatory functions while low-affinity sites are involved in catalysis. Diphenyl ether herbicides, acting as energy transfer inhibitors, interfere with nucleotide ex­ change on both categories of ADP binding sites. Their inhibitory pote...

متن کامل

Inhibition of photosynthetic electron transport by diphenyl ether herbicides.

The effects of the diphenyl ether herbicides HOE 29152 (methyl-2[4-(4-trifluoromethoxy) phenoxy] propanoate) and nitrofluorfen (2-chloro-1-[4-nitrophenoxy]-4-[trifluoromethyl]benzene) on photosynthetic electron transport have been examined with pea seedling and spinach chloroplasts. Linear electron transport (water to ferricyanide or methylviologen) is inhibited in treated chloroplasts, but nei...

متن کامل

Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides.

Diphenyl ether herbicides induce an accumulation of protoporphyrin IX in plant tissues. By analogy to human porphyria, the accumulation could be attributed to decreased (Mg or Fe)-chelatase or protoporphyrinogen oxidase activities. Possible effects of acifluorfen-methyl on these enzymes were investigated in isolated corn (maize, Zea mays) etioplasts, potato (Solanum tuberosum) and mouse mitocho...

متن کامل

A Non-Metabolic Model of Acifluorfen Activity

The para -nitro substituted diphenyl ether herbicides which cause rapid plant pigment photobleaching can be divided into two categories: 1. those that have a photosynthetic requirement for activity (e.g. oxyfluorfen) and 2. those that have no apparent metabolic requirement for activity (e.g. acifluorfen). A m odel is presented for the latter category, in which the diphenyl ether herbicide inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 78 1  شماره 

صفحات  -

تاریخ انتشار 1985